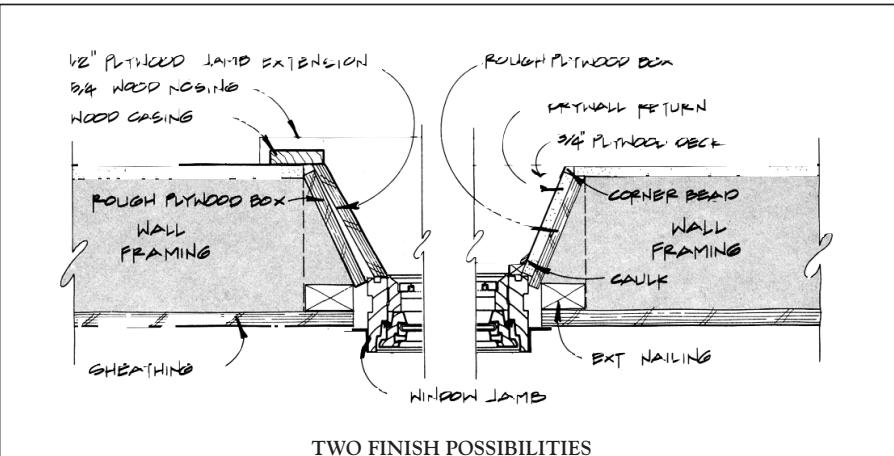


FAT-WALL WINDOWS

Compiled by Clayton DeKorne

Many superinsulated wall designs are well over 6 inches thick. Most window manufacturers, however, will only provide jamb extensions for up to a 2x6 wall. Moreover, wider extension jams are prone to damage during shipping and carry all the headaches associated with special-order materials.


An alternative is to trim out the window in place. The details described here can be adapted to fit a variety of thick wall styles. They represent a technique used by Neil Carter of Charleston, Maine, who builds very fat walls—sometimes 16 inches thick. Carter specs the highest R-value window available. Instead of using a jamb extension, he builds window wells with sides that angle out from the window into the room. He has found this detail to be very popular with his customers. It not only lets more light into the room, but it also accommodates plants, books, and seat cushions.

Framing the Box

The window sits flush to the outside of the wall in a plywood box. This box bridges the inside and outside faces of the wall and provides a firm base for the window regardless of the wall system used. In a single-wall system, the rough opening (R.O.) is framed 8 inches wider than the specified R.O. for the window. In a double-wall system, only the inside wall is framed with a wider R.O. This allows the plywood box to splay 4 inches on either side of the window. And the height of the R.O. is framed 1 inch larger to allow for the top and bottom of the plywood box.

To build a box, begin by ripping 8-foot lengths of $1\frac{1}{2}$ -inch CDX. The width of these plywood strips is equal to the thickness of the wall. Chop plywood strips for the sides of the box to length, and cut the top and bottom pieces for the angle of the splay on each end. When installing the box, first nail the top and bottom strips along the inside edge of the framing or strapping. Then install the side pieces, again nailing only along the inside edge. Put the factory edge of the plywood strip along the inside face of the wall and a factory end butting the top. This keeps the box square when the outside R.O. is framed in.

The plywood box needs to have solid nailing along the exterior side of the framing. Whatever nailing base is used around the perimeter of the window for the exterior casing is usually sufficient. The R.O., however, must be narrowed on the exterior with vertical nailers to the size of the window

TWO FINISH POSSIBILITIES

TWO FRAMING POSSIBILITIES

A splayed window well is easy to build if you hang the window in a rough plywood box. The top detail shows two finish treatments: a wood return with traditional stool and casing and a simple drywall return. This method can work with rigid foam on the inside (bottom left), foam on the outside (bottom right), and a number of other fat-wall systems.

R.O. If the wall is faced with foam on the inside and solid framing extends to the outside face of the wall, only vertical nailers are needed since the head and sill framing is flush to the outside. Before these vertical nailers are installed, however, don't forget to insulate the triangle formed by the splay. And before securing the outside edge of the plywood box to this nailing, X-cut the vapor barrier and tuck the ends of the triangular flaps between the plywood and the nailing, making sure to seal the corners. A poly skirt on the window works well here, too (see "Sealing Around the Windows," JLC, 6/90).

Finishing Off

Inside, the window well can be finished off with either a drywall or wood return, depending on the customer's preference. In either case, foam the perimeter of the window first to seal the gap.

Wood. If wood is called for, $1\frac{1}{2}$ -inch cabinet plywood will work well as a jamb extension. A finish extension

box can be nailed together as a unit and installed in one piece. The side extension jams run from the inside edge of the window jamb to the inside surface of the drywall. Both edges of the finish plywood extension jamb are ripped at parallel angles. Note that the angle of the finish jamb is different than the angle of the rough plywood box because of the thickness of the window. The top is shimmed down with $1\frac{1}{2}$ -inch material so the finish plywood is flush with the surface of the window jamb. Three-quarter-inch plywood is used on the bottom. It can sit on the rough plywood box to reveal $\frac{1}{4}$ inch of the window sill edge or it can be shimmed up with lauan ply to lay flush with the sill.

The sill extension fills in to the interior face of the wall and is capped with $3/4$ solid stock to create a stool detail. A biscuit joiner works well to secure the plywood to this nosing, which is also supported by the apron below. The edge grain of the plywood should be sanded if a conventional reveal is used

on the casing. To save money, however, the inside opening can be picture framed. In this case, the bottom-most casing is nailed flush to the sill without showing a reveal. On the remaining three sides of the opening, a "reverse reveal"—with the casing hanging about $\frac{1}{4}$ inch inside the face of the extension jams—works well to cover up any slight discrepancies in the squareness of the opening.

Drywall. If drywall returns are used instead, screw the drywall returns right to the plywood box and fit a thin wood trim into the corner between the window and the wall. A slight bevel can be put on the wall side of this trim piece. But rather than cut a wedge-shaped length if the window is slightly skewed to the opening, you can caulk the joint between the trim and the drywall. If there is a gap, it is usually less than $1/8$ inch or so, which the caulk easily fills. And if the trim is painted to match the wall (not the window), the wood, caulk, and drywall will blend in and the joint will disappear. ■