Letters

Wet Crawlspace Solutions |

To the Editor:

I would like to comment on the answer to the question of "Insulating Wet Basements" in On The House, 2/90. In my opinion, the given solution corrects only one-half of the problem.

I have been a home inspector in the western Maine area since 1986 and involved in the housing field since 1977. I have seen many instances where insulation, which has been installed exactly as Mr. Spies recommends, is not only damp, but totally saturated with moisture. As we all know, the colder the climate the greater the chance a building will experience condensation and moisture-related problems. As inspectors, builders, and remodelers, we should attempt to resolve any moisture-related problem that exists. This not only will make our clients happier, but it also may reduce callbacks and possible litigation.

The following recommendations have solved 90% of all dampness and bulk water problems I have encountered:

- Grade properly so bulk water runs away from and not towards the struc-
- Install gutters and downspouts for proper drainage of roof runoff water.
- If the water table is high, then install a sump pump and properly seal the hole to reduce radon gas infiltration.
- Install an adequate vapor barrier over a dirt floor in the crawlspace or basement, no matter how dry the floor is. Six-mil polyethylene plastic is recommended.
- · Properly vent all fans and moistureproducing appliances.
- Normally, crawlspaces and basements are not vented during the colder months due to the possibility of frozen pipes and heat loss through the floors above. When venting these areas during the warmer months, moisture enters and condenses on the cool surfaces, especially on hot and humid days. Therefore, we're not getting rid of the moisture as we thought: In fact, we're promoting condensation. So, why not keep those areas dry and not vent at all?

My direction has always been to remove the source of the moisture and to keep the area dry. If we can reduce the number of damp and moist conditions that exist in many homes, then we've not only solved problems for our clients, but possibly many problems for ourselves.

Paul G. Thornfeldt Western Maine Home Inspection Services South Paris, Maine

Testing Can Be Non-Destructive

To the Editor:

I'd like to commend you on the arti-

cle entitled "Roof Deck Renovations," (JLC, 12/89). It was extremely informative and accurate as was the sidebar, with the exception of the title. The title "Non-Destructive Testing," refers to moisture detection utilizing a nuclear, infrared, and/or capacitance test machine. Your article, on the other hand, required opening up the roof, which is destructive testing.

In a future edition, you may want to do an article on non-destructive testing. Moisture detection has always been very important, but in light of the problems with flame-retardant roofs, it's imperative.

G. Michael Van Alstine Cape May, N.J.

Disregard for Safety

To The Editor:

Love the cover of your December 1989 issue. Instead of titling it "Light Commercial," you should have started a "What's Wrong With This Picture?" contest. Anyone on our site shooting guns without glasses gets fined \$50. His shades are right next to his coffee cup...and you guys made a national pin-up of a flagrant disregard for industry accepted safety standards.
What's that TV show...Bloopers and

Beepers or something?

Peter Maigret Kailua-Kona, Hawaii

Brick Terms Confused

To the Editor:

After reading Henry Spies' response to a question regarding the difference between common and running bond for brick (On The House, 2/90), I beg to differ with his response that there is no difference between these bonds.

A bond is considered the arrange ment of bricks in rows or courses. There are various bond techniques used to create different appearances. The most universally used bonds are the common, running, English, Flemish, and stacked bonds.

Here are the differences:

The running bond pattern for brickwork as he correctly described in his answer consists of laying the bricks lengthwise (end to end) in courses known as stretchers. In a running bond, all courses are laid the same way, staggering the vertical mortar joints over the center of the brick of the preceding lower course until the desired height of the wall is achieved.

In a common or American bond, which is similar to a running bond, the sixth or seventh course of bricks is laid in a fashion that makes up what is known as a header course. This course is nothing more than bricks turned 90 degrees—so that the length of the brick protrudes toward the inner cavity of the wall. This helps to tie the outer face (wythe) to the back wythe or, depending on the style of the wall, to the main wall structure. Each brick in this header course is laid up in this manner, exposing what is normally the side (depth) of the brick. The next five courses or so are laid in a running-style bond. Repeat this procedure until the desired height of the wall is achieved.

Charlie Platt Glenmoore, Pa.

Price Book Wanted

To the Editor:

I am in need of a numbering system for a cost-accounting and estimating system. I don't have the time to reinvent the wheel. I am a remodeler/custom builder. Any suggestions? Would a reader share or sell?

Dick Kindt Sheridan, Wvo.

JLC columnist Morris Carey, a successful remodeling contractor and computer whiz, believes that no single estimating system will work for everyone. The important thing, he says, is that the person doing the take-offs and estimates be comfortable with the categories and the order in which they appear in the price book (or database).

To develop his own estimating categories, Carey says he sat down at the kitchen table and wrote down the main items his business handles in the sequence they occur on the job. A couple of evenings did the trick. Here are the main divisions he came up with:

01 plans & permits; 02 temporary facilities; 03 demolition; 04 excavation; 05 concrete; 06 rough carpentry; 07 finish carpentry: 08 lumber hardware: 09 root coverings; 10 windows; 11 stucco; 12 masonry; 13 drywall; 14 metal fireplaces; 15 garage doors and openers; 16 plumbing & fixtures; 17 specialties; 18 heating & sheet metal; 19 electrical; 20 insulation; 21 doors & millwork; 22 painting; 23 cabinetry; 24 countertops; 25 ceramic tile; 26 appliances; 27 finish hardware; 28 finish flooring; 29 mirrors & shower doors; 30 cleanup; 31 supervision.

More specific breakdowns follow in three digits following the division number. For example, electrical receptacles might be 19250, lighting fixtures, 19500, and so on. Different software programs have different numbering requirements.

Carey suggests that you look at a few schemes before developing your own. A good place to start is with the estimating guides from Craftsman Book Co. (P.O. Box 6500, Carlsbad, CA 92008); Frank R. Walker Co. (5100 Academy Dr., Lisle, IL 60532); Home Tech Publications (5161 River Rd., Bethesda, MD 20816); and R.S. Means (P.O. Box 800, Kingston, MA 02364).

—The Editors

Uniform Code for Modulars

To the Editor:

Your February 1990 issue on factorymade housing was right on target with excellent coverage that addressed the pros and cons of modular construction.

The National Conference of States on Building Codes and Standards (NCSBCS), representing the states' building code and public safety interests, supports modular housing as one solution to our nation's affordable-housing problem.

NCSBCS is trying to resolve one problem that modular manufacturers face-myriad building codes and standards. NCSBCS has proposed that the states adopt uniform regulatory procedures under an Interstate Compact on Industrialized/Modular Buildings. The compact enables the states to adopt the Model Rules and Regulations adopted by the Joint Council on Industrialized/Modular Buildings (a consensus body of representatives from the states, industry, consumers, and third-party inspection agencies) and enter into and maintain effective interstate reciprocity.

The compact:

- Builds upon existing regulatory authority in 36 states and current model building codes. It [enables] states without statewide regulations to participate in the compact. The Model Rules and Regulations include consideration of unique climatic and site conditions as well as energy conservation, wind load, and seismic provisions.
- Reduces overlapping and contradictory regulatory systems to a single uniformly adopted and administered system. This enables a manufacturer to build to one code, knowing it will be accepted by all states participating in the compact.
- Reduces costs to manufacturers (and ultimately the consumer) of complying with myriad building codes.

Congress is considering several options for regulation of modulars. NCSBCS finds the interstate compact superior to a national federally preemptive code for modulars.

Robert Wible Executive Director NCSBCS

Clarification

Roof raising option: The method not just the jacking system—of building a dormer which enables the builder to save the existing roof is patented by Bob Terenzoni of High Tech Dormer (the company featured on the cover of our September issue). The pneumatic jacks pictured on the cover are just part of a larger multiitem package that Mr. Terenzoni markets to builders. Typical savings when using this method are 15% to 30% on standard roofs. The figures of 45% to 60% savings mentioned in the article are for slate roofs.

Keep 'em coming...We welcome letters, but Keep 'em coming...We welcome letters, but they must be signed and include the writer's address. The Journal of Light Construction reserves the right to edit for grammar, length, and clarity. Mail letters to JLC, RR#2, Box 146, Richmond, VT 05477.