LETTERS

Speedy Scuttle Holes

To the Editor:

Here's a solution we arrived at for putting in attic scuttles that won't compromise an insulated ceiling. We use an inexpensive casement window and install plasterboard in place of the glazing. This will fireproof the foam that is glued to the other side of the window for insulation. These scuttles go in fast. They're shimmed and sealed just like any window or door, and the latches and weather-stripping are better than anything we could fabricate on site.

Our clients actually seem to like the crank opening, and, best of all, it's fairly foolproof. We can rest assured we won't get many callbacks for moisture in the attic introduced through a leaky, or neglected scuttle. Keep in mind that some codes will require a window that opens wide enough to serve as a means of egress into the attic in the event of a fire.

William J. Baldwin Johnston, R.I.

Ridge Vent Options

To the Editor:

This is in reference to "The Importance of Baffles" (Letters, 1/91). Mr. Wolfert's history is correct, but his conclusions are not up to date.

Today's "state-of-the-art" design of ridge venting is much different from "the 1960s." Yes, research in the 1960s did show advantages of wind baffles over unbaffled metal louvered ridge vents. The key word here is "louvered." With no protection at the louvered openings, the addition of the baffle improved the ridge vent.

In 1970, the core or corrugated ridge vent was first used. Some refer to its design as honeycomb. After nine years of research and testing, the corrugated ridge vent was first offered to the building industry.

The four principles of knowledge attained about the corrugated ridge vent in the 1970s were:

- Attic ventilation is not a product, but a system. The system must have two components, intake (soffit/eaves) vents and exhaust (ridge vents).
- Baffles are not needed with the core design, provided the system is designed and installed correctly. (Balanced between intake and exhaust.)
- The core, made from hundreds of straw-like tubes referred to in our trade as flutes has sufficient friction to prevent the infiltration of weather.

 The friction causes an air pattern similar to the pattern made by the use of external wind baffles.

Our research and testing leads to the conclusion that if a builder chooses a ridge vent which has a louvered design, he must choose a brand which also has an external baffle. For those who select a core or corrugated brand, the external baffle is not needed. Similar in function but different in design, the corrugated ridge vent is adaptable with unlimited uses.

Gary L. Sells, CEO Cor-A-Vent Inc. Mishawaka, Ind.

Stairbuilding Tips

To the Editor:

I agreed with most of the stair construction article by Bill McLearn in the January and February issues. As a stairbuilder, I have found two additional tricks to make the installation of treads easier.

First, on returned ends, it is easier to cut an accurate 45-degree miter if you clamp all the treads together, set your circular saw to cut 11/4" deep at 45 degrees, and use a guide nailed on square to the stack of treads. After cutting the returned ends you scribe the treads to the wall skirtboard.

Second, imprecise cutting of the rough stringers can cause installation problems for the treads and risers — any variation between the three or four rough stringers causes the treads and risers to rock.

To prevent this, I do one layout of the rise and run for the carriage on my straightest 2x stock, then screw it to the second rough stringer stock. With my circular saw set at 90 degrees, I cut the layout lines on the first stringer, which kerfs the underlying stringer stock. Then I screw the kerfed stringer to another blank and saw the kerfs. I find it much easier to follow a kerf line than a pencil line. Taking care in cutting ensures that all the stringers will be the same.

Although it may be only a preference, I think the returns and fittings should be applied with *Titebond Carpenters Glue* and not *Liquid Nails*. I have found that Titebond is easier to sand and shows less when the finish is applied.

Robert J. Dick Lovettsville, Va.

Five Days Too Short

To the Editor:

Matthew Feis makes some interesting points relative to liability and

ability when it comes to home inspections (Letters, 2/91). He questions the efficacy of five-day home inspection courses with the critique that you can't possibly learn what you need to know to inspect homes in five days. As the founder of the Professional Home Inspectors Institute (a separate facility, with a curriculum offering a five-day introductory exposure course), I could not agree more.

Having been a remodeling contractor prior to entering the home inspection business, I can appreciate his feeling that such experience is valuable preparation for home inspecting. Valuable yes, invaluable

As the owner of a company which has performed very close to 60,000 individual home inspections and up to 10,000 inspections per year in one city with as many as 20 inspectors doing the work at one time, I feel I have a bit of experience to speak from.

Upon entry into this business I felt my remodeling background stood me in good stead. It was sufficient back then in 1977 when home inspections were less sophisticated (less expensive too) and consumers were less demanding. Knowing what I know now, I wouldn't consider it sufficient today.

It is one thing to understand and hold a building in realistic perspective yourself, it is quite another to communicate that verbally and in writing to a highly anxious buyer.

I believe this business is much more sophisticated than most people originally imagined and success demands a more sophisticated approach and considerably more preparation and training. A solid technical understanding of house problems and their symptoms, clues, and telltales is the minimum technical entry level. Excellence in people handling and communication skills are also required for success.

Michael P. Lennon HomePro Systems Inc. Falls Church, Va.

Energy Efficiency More Than R-Values

To the Editor:

I am writing to ask if you would consider writing more on energy conservation, recycling and environmentally sound building practices. This is an area of construction that is both old and new, but not yet commonly considered as "standard building practice."

For example, it used to be common to reuse concrete 1x form wood in the same house as sheathing for walls or roof. Now we either throw away the 3/4-inch plywood or we cart the forms around to be used again on other sites. The questions come up as to which practice is the most economical, which practice is the most environmentally sound, and are there new practices that need to be or have been developed that we don't know about. Most often it would seem that we do not take into account the gasoline, oil, and rubber used to haul around these materials for forms.

It is commonly believed that if you want to increase the efficiency in a house, one of the easiest methods is to replace an inefficient furnace. What I am wondering, that isn't commonly considered, is whether it would be better to wait to replace the furnace until the existing furnace has used up its effective life. That might be better than spending the energy to build a new furnace and waste the remaining potential of the old furnace, since it will most likely be thrown away, maybe not even recycling the materials, just "landfilling" them.

The concern to be energy conscious is growing, yet there are not enough forums within the mainstream of our community to help us work together to create new building practices. Too often our energy consciousness seems to be limited to considering solar heat, insulation, air-tight houses, and higher efficiency furnaces. We often forget the myriad other possibilities.

How do we get ourselves, our tools, our materials to the job site? How do we inform and educate clients, architects, tradesman, contractors, suppliers and manufacturers? How can we reduce construction waste and recycle remodeling castoffs?

Randy Sibley CJR Associates Inc. Seattle, Wash.

Keep'em coming...We welcome letters, but they must be signed and include the writer's address. The Journal of Light Construction reserves the right to edit for grammar, length, and clarity. Mail letters to JLC, RR#2, Box 146, Richmond, VT 05477.