

On a jobsite the other day, an old-timer was using a curvedclaw hammer. Does that style of hammer have advantages over the ubiquitous straight-claw hammer?

Carl Hagstrom, editor of WoodWeb.com, in Montrose, Pa., responds: Though once a staple in every carpenter's toolbox, hammers have, for the most part, become old school, with the wide variety of air nailers that are available now. Given that today's finish nailers can set nails with no danger of leaving "paw prints," I'm not sure anyone even needs a finish hammer. Regardless, here's the perspective from this old-timer—I've been swinging a straight-claw hammer since 1972.

Curved-claw hammers do have some advantages over straight-claw hammers. For one, curved-claw finish hammers weigh less than straight-claw framing hammers: typically 16 ounces as opposed to 20 ounces or more. Also, a curved claw lets you pull a nail with minimum damage to the board—a plus for finish carpentry (see photo, below). Finally, curved-claw hammers don't have the "accidental scar" potential that a straight claw has. Think about backing into a cabinet with your tool belt on: Would you rather have a curved surface or the end of a straight claw touch the cab?

But with the titanium-headed hammers weigh-

ing in at a mere 16 ounces, weight isn't as big a deal anymore. And a straight-claw hammer is still a must for framing and demo work—it has more leverage and more punch for sinking large nails quickly than a finish hammer does. Also, if you keep its claws relatively sharp, it can serve purposes beyond nail pulling. You can hack away material, "spear" the end of a joist to lift it, and as the job lore goes, save yourself from taking a ride off a roof by burying the claw in the sheathing on the way down.

Thankfully, I've never enjoyed the opportunity to test that last attribute, but on many occasions, I have hooked the claw over the edge of the most recent course of roof sheathing to pull myself up for setting the next course. Then there's the hammer toss—try that with a curved claw! And most importantly, it's much easier to open a bottle of beer with a straight claw then a curved one.

Bottom line, curved claws should be considered just for finished interior work, and straight-claw hammers for the rest. If you have to pick just one, though, the straight claw wins every time.

In a recent JLC Update newsletter, an author provided a "rule of thumb" for sizing joists. Is there a similar rule for sizing headers?

Darren Tracy, P.E., owner of West Branch Engineering, in Saratoga Springs, N.Y., responds:
Before becoming a licensed professional engineer, I was a contractor. When I had just started my business, I did any kind of job I could find in order to make a living, often working on small remodeling jobs or additions.

Back then, I used a rule of thumb for sizing headers that either someone had told me about or I'd read about somewhere. It went like this: Measure the span in feet and add 2 to that number. The sum will be the height of your double header in inches. For example, if the

JLCONLINE.COM JLC/JANUARY 2016 3

Content Licensing for Every Marketing Strategy

Marketing solutions fit for:

Outdoor | Direct Mell | Print Advertising | Tradeshow/907 Displays Social Media | Radio 6 TV

Leverage branded content from The Journal of Light Construction to create a more powerful and sophisticated statement about your product, service, or company in your next marketing campaign.

Contact Wright's Media to find out more about how we can customize your acknowledgements and recognitions to enhance your marketing strategies.

For information, call Wright's Media et 677.662.6296 or vielt our website at wereverightemedia.com span is 4 feet, add 2 to 4 for a sum of 6. Therefore, the header would need to be made from doubled 2x6s. For odd numbers, round up.

This rule of thumb seemed to be consistent with what I had observed as a contractor as being typical of header details in the industry—and the rule had a certain jobsite eloquence to it. But from a professional engineer's perspective, the problem is that the rule is not comprehensive; it may work for a single-story home with an average snow load, but it doesn't work for every situation.

So the short answer is, there is no comprehensive "rule of thumb" that is useful (and safe) for designing headers.

Consider how a header functions. Simply put, a header (in this case) is a horizontal member that spans a wall opening such as a door or window to transfer loads from above down and around that opening. There are too many "load" variables to consider in one simple formula or rule. Snow loads can vary tremendously, as can roof, ceiling, and floor loads and the various combinations and permutations of those loads—all of which can vary depending on the width of the building.

Additionally, advanced framing techniques that maximize energy efficiency are becoming commonplace. Many of these framing strategies call for single-member headers, and plans that incorporate these headers should always be reviewed by a professional engineer.

You could probably devise rules of thumb for designing headers for the particular range of scenarios you are likely to encounter, but that seems like a lot of work and a lot to remember. An easier solution would be to look up the prescriptive spans from Table R502.5 in the IRC, which can be found free online at codes.iccsafe.org.

Or you can use software, some of which is free (Forte by Trus Joist, for example, lets you design using its engineered products, but with the option of using dimensional lumber as well). This software isn't difficult to use, once you get past the learning curve, if you have some technical background.